Efficiently Approximable Real-Valued Functions

نویسندگان

  • Valentine Kabanets
  • Charles Rackoff
  • Stephen A. Cook
چکیده

We define a class, denoted APP, of real-valued functions f : {0, 1}n → [0, 1] such that f can be approximated to within any > 0 by a probabilistic Turing machine running in time poly(n, 1/ ). The class APP can be viewed as a generalization of BPP. We argue that APP is more natural and more important than BPP, and that most results about BPP are better stated as results about APP. We show that APP contains a natural complete problem: computing the acceptance probability of a given Boolean circuit. In contrast, no complete problem is known for BPP. We observe that all known complexity-theoretic assumptions under which BPP can be derandomized also allow APP to be derandomized. On the other hand we construct an oracle under which BPP = P but APP does not collapse to the corresponding deterministic class AP. (However any oracle collapsing APP to AP also collapses BPP to P.)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pointfree topology version of image of real-valued continuous functions

Let $ { mathcal{R}} L$ be the ring of real-valued continuous functions on a frame $L$ as the pointfree  version of $C(X)$, the ring of all real-valued continuous functions on a topological space $X$. Since $C_c(X)$ is the largest subring of $C(X)$ whose elements have countable image, this motivates us to present the pointfree  version of $C_c(X).$The main aim of this paper is to present t...

متن کامل

The ring of real-valued functions on a frame

In this paper, we define and study the notion of the real-valued functions on a frame $L$. We show that $F(L) $, consisting of all frame homomorphisms from the power set of $mathbb{R}$ to a frame $ L$, is an $f$-ring, as a generalization of all functions from a set $X$ into $mathbb R$. Also, we show that $F(L) $ is isomorphic to a sub-$f$-ring of $mathcal{R}(L)$, the ring of real-valued continu...

متن کامل

Compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions

We characterize compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions on metric spaces, not necessarily compact, with Lipschitz involutions and determine their spectra.

متن کامل

Approximation by Analytic Operator Functions. Factorizations and Very Badly Approximable Functions

This is a continuation of our earlier paper published in Selecta Math. 11 (2005), 127–154. We consider here operator-valued functions (or infinite matrix functions) on the unit circle T and study the problem of approximation by bounded analytic operator functions. We discuss thematic and canonical factorizations of operator functions and study badly approximable and very badly approximable oper...

متن کامل

m at h . FA ] 2 7 Ju l 2 00 4 APPROXIMATION BY ANALYTIC OPERATOR FUNCTIONS . FACTORIZATIONS AND VERY BADLY APPROXIMABLE FUNCTIONS

This is a continuation of our earlier paper [PT3]. We consider here operator-valued functions (or infinite matrix functions) on the unit circle T and study the problem of approximation by bounded analytic operator functions. We discuss thematic and canonical factorizations of operator functions and study badly approximable and very badly approximable operator functions. We obtain algebraic and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Colloquium on Computational Complexity (ECCC)

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2000